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Large eddy simulation of free surface shallow-water flow
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SUMMARY

Shallow-water flow with free surface frequently occurs in ambient water bodies, in which the horizontal
scale of motion is generally two orders of magnitude greater than the water depth. To accurately predict
this flow phenomenon in more detail, a three-dimensional numerical model incorporating the method of
large eddy simulation (LES) has been developed and assessed. The governing equations are split into
three parts in the finite difference solution: advection, dispersion and propagation. The advection part is
solved by the QUICKEST scheme. The dispersion part is solved by the central difference method and the
propagation part is solved implicitly using the Gauss—Seidel iteration method. The model has been
applied to free surface channel flow for which ample experimental data are available for verification. The
inflow boundary condition for turbulence is generated by a spectral line processor. The computed results
compare favourably with the experimental data and those results obtained by using a periodic boundary
condition. The performance of the model is also assessed for the case in which anisotropic grids and
filters with horizontal grid size of the order of the water depth are used for computational efficiency. The
coarse horizontal grid was found to cause a significant reduction in the large-scale turbulent motion
generated by the bottom turbulence, and the turbulent motion is predominately described by the sub-grid
scale (SGS) terms. The use of the Smagorinsky model for SGS turbulence in this situation is found
inappropriate. A parabolic mixing length model, which accounts for the filtered turbulence, is then
proposed. The new model can reproduce more accurately the flow quantities. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The turbulence induced in ambient shallow-water bodies can be divided into two scales. The
vertical scale of turbulence in the order of the water depth is mainly due to bottom friction.
The lateral scale of turbulence in the order of the horizontal dimension of the water body is
mainly due to flow separation and other horizontal shear flow phenomena. As the horizontal
scale of motion is significantly larger than the vertical scale of motion, the hydrostatic pressure
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assumption is valid and the vertical momentum equation can be simplified. Owing to the
presence of bottom friction, and occasionally wind forcing and density stratification, the flow
field will be three dimensional.

For the modelling of turbulence, there are practically two approaches: large eddy simulation
(LES) and turbulence models for solving the Reynolds-averaged Navier—Stokes (RANS)
equations. A comparison of the two approaches indicates that LES is superior to the RANS
method using turbulence models when the flow is very complex and the large-scale structures
dominate the turbulent transport and/or unsteady processes are involved [1]. In terms of
computational effort, LES is usually much more expensive than turbulence models for RANS.
This is because LES requires a significantly larger number of time steps for statistical
averaging. However, for three-dimensional unsteady flow problems, the difference in comput-
ing effort between the two approaches is not so large if the grid sizes used in the two
approaches are similar.

LES is by definition three dimensional. In simulating complex flow phenomena, the
specification of boundary and initial conditions needs special attention. The treatment of the
free surface boundary condition is difficult, and free surface flow problems are relatively
seldom tackled by the method of LES. In free surface shallow-water flow, one approach is to
use the rigid-lid assumption [2]. Another approach is to account for the variation of the free
water surface by vertically integrating the continuity equation, and relate the variation of the
free water surface to the pressure gradient through the hydrostatic pressure assumption [3]. In
ambient water bodies, the large disparity in horizontal and vertical scale of motion renders the
use of LES to be expensive if the vertical scale is also computed. Bedford and Babajimopoulos
[4] applied LES to a lake model and used a grid with a horizontal size two orders of magnitude
greater than the vertical size. It was found that the model propagated energy inputs according
to two-dimensional turbulence theory. However, the problem of using anisotropic grids and
filters in shallow-water flows has not been further pursued.

In the present work, an LES model is developed for the simulation of free surface
shallow-water flow. An operator splitting method is used so that different numerical schemes
can be used to approximate different physical processes (e.g. Li and Yu [5]). The governing
equations are split into three parts in the solution: advection, dispersion and propagation. In
the advection part, the advective accelerations are approximated by the third-order QUICK-
EST scheme [6]. In the dispersion step, the sub-grid scale (SGS) terms are solved by central
difference and the Leonard terms [7] are solved by third-order difference. In the propagation
step, the surface elevation (pressure) is obtained from the solution of the Poisson-type
equation. The use of anisotropic grid and filters, which are unavoidable for computational
efficiency, and their effect on the computed results will be investigated. The adequacy of using
the Smagorinsky model to model SGS turbulence in this situation will be studied. The model
will be tested against the extensive laboratory measurements for free surface channel flows.

2. GOVERNING EQUATIONS
Denoting the velocity field by a Cartesian vector U,, the pressure by P, the kinematic viscosity

by v (assumed constant), the density by p (assumed constant), the space vector by x;, the time
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by ¢ and the spatially filtered variable by an overbar, the filtered Navier—Stokes equations for
fluid motion are written as
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The non-linear adective term can be expanded as
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where u;= U, — U, is the velocity fluctuation. The first term represents the large-scale compo-
nents and is decomposed by a Taylor series expansion of the filter convolved with the product.
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The cross-product terms are subsumed into the SGS components and their summation is
denoted by R;
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The SGS stress is decomposed into the sum of a trace-free tensor 7; and a diagonal tensor R,
which are absorbed into the pressure term. The trace-free tensor is usually closed by the
Smagorinsky eddy viscosity model [8]

ou; GU
;= — vT<a o, > = —2vpS; (6)
vp= L2, /28,8, @)
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where v, is an eddy viscosity, L is the turbulence characteristic length scale and is modified by
the van Driest damping (with parameters x;7 and A% [9]) to account for the effects of solid
wall boundaries, C, is a constant and taken to be 0.15, A, = 2Ax;, and Ax; is the grid size in the
ith direction. However, when a coarse grid is used, the adequacy of using the Smagorinsky
eddy viscosity model has to be investigated.

By assuming hydrostatic pressure, the filtered equations of motions become
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The vertical velocity is obtained from the continuity equation
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The variation of free surface is obtained from the hydrostatic pressure equation and the
continuity equation

on o [7 o (7
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where #(x,, x,) is the surface elevation and x;= —/ represents the bottom. The surface

elevation is related to the pressure at x; =0, P, = P(x;, X,, 0) by

on_

o - P8a =L2 (13)

3. SOLUTION METHOD

The split operator approach is used in the solution of the governing equations. At each time
step the equations are split into three steps: advection, diffusion and propagation. The
equations for the advection step are

urtir g 0 o
At B /

ax-’ l 2 ( )

J
The QUICKEST scheme [6] is used to solve the equations of pure advection. The scheme is
third-order accurate and can eliminate the second-order numerical diffusion. A similar scheme
has been analysed and applied in LES by other investigators [10]. The equations for the
diffusion step are

A 32
Ur_z+2/3 o U;_H— 1/3 azU o(=2v.S.. <4 F U1U1)>
i i =y i ( Vo {/)_ Y OX l:1 2 (15)
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In the diffusion step, the simple four-node centred space scheme is used for the second-order
diffusion terms and a third-order difference scheme is used for the Leonard terms (the last
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terms on the right-hand side of the above equation). The equations for the propagation step
are

’/]n+l_;/ln+2/3 0 no 0 no

_— = — U,dx; —— U,d 16
At o), TR T ), e (16)
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Equation (17) is due to the surface elevation not being level. Equations (16) and (17) are solved
implicitly. The three equations are decoupled through two procedures. Firstly, the unknown
flow rates at time step # + 1 are eliminated by differentiating Equation (17) with respect to x
(x;) and y (x,). Secondly, the resulting Poisson-type equation with an essential boundary
condition is solved by using the Gauss—Seidel iteration method. Finally, the vertical velocity
U, is computed from the continuity equation

U, = —r (aU‘+6U2>dx3 (18)

a \OX; 00Xy

4. BOUNDARY CONDITIONS

The specification of boundary condition is difficult in the LES model because the turbulence
quantities need to be specified. Periodic boundary condition (PBC) is predominately used at
the inflow boundary for its easiness of implementation [2,11]. This type of boundary condition
is appropriate for the case that the inflow condition and the outflow condition are identical.
However, in more complicated situations, frequently occurring in engineering problems, such
as flow in an expanding or converging channel, PBC cannot be used. Another more general
approach is to specify the inflow quantities. For free surface shallow-water flow, the vertical
variation of the filtered longitudinal velocity U ( = U,) can be specified as a logarithmic profile
[12] with a Manning coefficient » and the transverse filtered velocities, V' (= U,) and W
(= U,), can be assumed equal to zero and the water depth can be extrapolated from the
interior points (zero gradients). Turbulence quantities at the inflow boundary can be generated
by a spectral line processor (SLP) [13]. This is achieved by firstly specifying the initial
u'(x,y,2z0), v'(x,y z0), w(xy,z0); u =u), v=u), w =uj. The expression is given by

Ny N3

Ny
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where E| is the target spectrum, ¢; ; ; is the independent random phase uniformly distributed

between 0 and 2, Wy is the angular frequency in the x-direction (= (j;— 1/2)Aw,, etc;
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wy; =, +ow,, etc, where dw, is a small random frequency introduced to eliminate the
periodicity of the simulated process. A similar expression can be obtained for v’ and w’. The
target spectra chosen are those obtained experimentally (e.g. Hinze [14]), and are given as
follows:

2
2143k
E (k)=E.(k,)= . A T+ (21)

where k.= w,/U is the wavenumber in the main flow direction (x-direction) with mean
velocity U; u’? is the mean squared velocity fluctuation in the x-direction; A is a macroscale
of turbulence. In free surface channel flow, Nezu and Nakagawa [15] showed that

A z

7= \/;I’ for z/H < 0.6 (22a)
A

7= 0.77, for z/H>0.6 (22b)

where H is the water depth, z is the vertical ordinate measured from the bottom. By choosing
the length of the computational domain (Lp) to be sufficiently long so that the inflow and
outflow boundary conditions are uncorrelated, the inflow boundary condition can be specified
using Taylor’s frozen turbulence hypothesis [16]

w(©,y,z,0)=u'(x",y,z0) (23)

where x"=nlLy— Ut, n is a positive integer chosen such that 0 < x’' < Lp,.

At outflow boundary, the water depth and velocities are determined from a radiation
boundary condition. At the solid wall boundary, no-slip boundary condition is used and the
wall function technique [17] is applied. At the water surface, the surface shear stresses 7., and
7,, are set to zero. At the bottom, the magnitudes of the bottom shear stresses z,,, and 7, are
specified by the Manning equation. Another method of relating the bed shear stress to the near
wall velocity using the log law has also been tried. It was found that the computed results
display not much difference.

The initial condition consists of a mean velocity and depth field, as well as a turbulence field.
The vertical variation of the filtered longitudinal velocity U is specified as a logarithmic profile
with a Manning coefficient n. The transverse filtered velocities, V" and W, are assumed equal
to zero and the water depth is computed based on force balance. The turbulence quantities are
imposed to the mean velocity field and are generated by a random number generator if PBC
is used, or generated by the SLP if the inflow quantities are specified.
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5. MODEL ASSESSMENT

Free surface flow in a rectangular channel is used as the test case for assessing the performance
of the model. The reason is that there are ample experiments being carried out and the results
are consistent and conclusive [15]. The main purposes are threefold. The first is to study the
performance of using different inflow boundary conditions. The second is to investigate the
effect of anisotropy of grid size and filtering. The third is to assess the Smagorinsky eddy
viscosity model. The major source of turbulence in this situation is from the bed shear stress
at the bottom.

The dimensions of the channel section are 3.2 x 1.6 x 0.2 m>. The grid system consists of 161
grid points in the streamwise direction, 81 grid points in the transverse direction and 21 grid
points in the vertical direction. The flow is sub-critical with a mean velocity of 0.5 ms~' and
the Reynolds number based on the depth and the mean velocity is Re = 10°.

The inflow boundary conditions are studied first. In using the PBC, the dynamic steady state
is attained in about four turnover periods (Figure 1). If the inflow boundary condition is
generated by the SLP, the flow is found to attain dynamic steady state after only two turnover
periods and the solution becomes periodic (Figure 2). The reason for the periodicity of the
solution is that the initial condition is generated only for the computational domain, and the
inflow boundary condition is inferred from the initial condition and hence is repetitive
according to Equation (23). It is noted that the time-averaged velocities for the case of using
PBC are slightly higher than those in the case of using SLP. This is probably due to that there
is no control on the magnitude of the discharge rate for the case of using PBC. The amplitude

(ms7)

u 0.6
(ms?) o5
0.4

| |
0 12.8 25.6 384 51.2 64 76.8 89.6 102.4 115.2
Time (s) ’

Figure 2. Time variation of u-velocity at a typical point (inflow boundary condition generated by an
SLP).
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of variation of the velocity fluctuations is also larger for the case of using PBC, partly due to
the larger mean velocity for this case. A typical field plot of the instantaneous U-velocity is
shown in Figure 3. The turbulence statistics are collected for the subsequent ten turnover
periods. Figure 4 displays the mean vertical velocity profile at the centre of the computational
domain. The agreement between the computed results and the measured results [15] is
satisfactory for both cases. Figure 5(a)—(e) shows the distributions of the root-mean-square
(rms) velocity fluctuations (u’, v’, w’), the turbulence kinetic energy (k) and the vertical shear
stress u'w’. The quantities are made non-dimensional by division with the shear velocity u* or
square of u*, where u* =./7,/p, and 7, is the bottom shear stress. The computed values with
PBC are higher than the mean experimental values, while the computed values with SLP

Figure 4. Mean vertical velocity profile for different inflow boundary conditions
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display a smaller turbulence energy content and are closer to the mean experimental values. This
shows that the imposition of the inflow boundary condition consists of the mean velocity profile
and the turbulence field generated by the SLP being comparable with the widely used PBC. The
implication is that in the application of the LES model to a more complicated situation, in which
the PBC cannot be used, the inflow boundary condition can be specified by the SLP.
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Figure 5. Vertical profiles of turbulence quantities: (a) u'; (b) v’; (c) w'; (d) k; (e) u'w’.
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Figure 5 (Continued)

To investigate the effect of anisotropy of the grid size and the filtering, the number of
grid points in the transverse direction is reduced to 9, and the grid size in this direction is
0.2 m, which is equal to the water depth. With such a grid size, the large-scale eddies and
also the secondary recirculations are filtered out. The time variation of the u-velocity
at a typical point displays no apparent fluctuation (Figure 6(a)) for the case of PBC
and only a long-period fluctuation with high frequency components significantly damped
for the case of using SLP (Figure 6(b)). The computed mean vertical velocity profile shows
a large deviation from the logarithmic distribution for the case of PBC, and a lesser
deviation for the case of using SLP (Figure 7, Smagorinsky model). The associated turbu-
lence quantities are significantly greater than the corresponding experimental values
(Figures 8 and 9, Smagorinsky model). This can be explained by the fact that the turbu-
lence, which is mainly bottom generated, is now predominately accounted for by the SGS
turbulence terms. As the size of the turbulence eddies is of the order of the water depth,
the use of the horizontal grid size close to the water depth will make the SGS turbulence
include the most energy containing eddies and hence the use of the Smagorinsky eddy
viscosity model is inappropriate. The use of LES with a coarse grid is similar to the RANS
simulation in which the turbulent motion with all scales is simulated by a turbulent closure
model.

To model more accurately the SGS turbulence in a coarse grid system, a parabolic
mixing length model is proposed. In this model the length scale is given by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 31-46
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Figure 6. Time variation of u-velocity at a typical point (coarse grid): (a) PBC, (b) SLP.

L= min<CS|:1 — exp< — Z{ >:|(AXA},A_7)”3, KZ<1 — ;{)) (24)

where A, =2Ax, A,=2Ay and A.=2Az; and Ax, Ay and Az are the grid sizes in the x-, y-
and z-directions respectively. The equation describes the fact that the turbulence length
scale is limited by the water depth if the gird size is greater than the water depth, and is
limited by the grid size if the grid size is much smaller than the water depth. The parabolic
variation in length scale in the second expression on the right-hand side of Equation (24) is
derived based on the logarithmic variation of the vertical velocity profile and a linear
vertical variation of the shear stress in open channel flow [18]. The expression has been
verified experimentally [15]. As compared with the use of the Smagorinsky eddy viscosity
model, the computed mean velocity profile shows a better agreement with the measured
distribution (Figure 7). For the turbulence quantities, improvement in the prediction of the
vertical shear and turbulence kinetic energy is obtained (Figures 8 and 9), especially for the
case of using PBC. This is due to the specification of the correct turbulent length scale.
However, the vertical variation of the turbulence kinetic energy displays a more rapid
decrease in magnitude near the surface. This is mainly due to the reduction of both the
length scale and the magnitude of velocity gradient near the free surface. The variation of
the fluctuations of the velocity components cannot be computed directly because the
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Figure 7. Mean vertical velocity profiles (coarse grid): (a) PBC; (b) SLP.

large-scale turbulence is filtered out. If the distribution of the kinetic energy is assumed
to follow the ratio of 16:9:4 in the x-, y-, z-directions respectively, the results are close to
those obtained empirically (Figure 10). This ratio is a good approximation for boundary layer
flow.
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Figure 8. Vertical profiles of turbulence quantities (coarse grid, PBC): (a) k; (b) u'w’.

6. CONCLUSIONS

An LES model has been developed and applied to study free surface shallow-water flow. The
imposition of the inflow turbulence quantities using an SLP produces results that compare
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Figure 9. Vertical profiles of turbulence quantities (coarse grid, SLP): (a) k; (b) u'w’.
favourably with the mean experimental results and those from the case of using periodic
boundary condition. A significant reduction of the large-scale turbulence is resulted when

coarse grid is used, and a parabolic mixing length model performs better than the Smagorinsky
model in this situation.
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Figure 10. Vertical profiles of inferred velocity fluctuations (coarse grid, PBC): (a) u’; (b) v'; (c) w'.
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